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ABSTRACT

Kidney disease affects almost 15% of the US population, and prevalence is anticipated to grow as the population ages and the obesity epidemic
continues due to Western dietary practices. The densely caloric Western diet, characterized by high animal protein and low fruit and vegetable
content, has fueled the growth of chronic diseases, including chronic kidney disease. The glomerulus or filtering unit of the kidney is very susceptible
to barotrauma, and diets high in animal protein impede the glomerulus’ability to protect itself from hemodynamic injury. High animal protein intake
combined with low intake of fruits and vegetables also leads to a high net endogenous acid production requiring augmentation of ammonium
excretion in order to prevent acidosis. This higher workload of the kidney to maintain a normal serum bicarbonate level may further exacerbate
kidney disease progression. This article reviews the potential mechanisms whereby several key characteristics of the typical Western diet may impact
kidney disease incidence and progression. Reducing animal protein intake and egg yolk and increasing intake of fruits and vegetables and fiber may
prevent or delay end-stage renal disease, but few clinical trials have examined vegetarian diets for management of chronic kidney disease. More
research is needed to determine optimal dietary patterns for the prevention of kidney disease and its progression. Adv Nutr 2019;10:S367–S379.
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Introduction
Chronic kidney disease (CKD) affects almost 15% of the
US population or 30 million US adults (1). Of these,
approximately 661,000 individuals have suffered kidney
failure requiring dialysis or transplantation. Many people
afflicted with CKD may be most concerned about their
kidneys failing and fear dialysis, but due to the heightened
cardiovascular disease risk that accompanies CKD, the
overwhelming majority will not live long enough for their
kidneys to fail (2). Among adults older than age 65 y,
the presence of CKD is associated with a 2-fold higher
prevalence of cardiovascular disease (2). In addition, the
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presence of CKD reduces overall survival after a heart attack
or stroke (3). Thus, the excess cardiovascular disease risk
that accompanies CKD is really the main driver of morbidity
and mortality in this population. Although genetic factors
definitely play a role in disease incidence and progression,
especially for cases in which kidney failure occurs before age
50 y, the majority of cases are rooted in nutritional factors
and largely preventable. Currently, it is estimated that >24%
of CKD cases in industrialized countries can be attributed
to nutritional factors (4). In the United States, diabetes and
hypertension account for at least 70% of all cases of kidney
failure (5). During the next several decades, CKD incidence
will increase as the US population ages within a setting of
unabated obesity (6).

Health systems should place strong emphasis on CKD
prevention because of the substantial economic impact this
disease has on both the patient and the payer. Even during
earlier CKD stages when renal replacement therapy is not
needed, the total health expenditures for CKD are often
higher than costs associated with heart failure or stroke. Out-
of-pocket costs incurred by patients are also higher for CKD
than for heart failure or stroke (7). Most end-stage renal
disease (ESRD) costs are paid by Medicare, and these costs
now exceed $33 billion annually but are projected to expand
as the total number of individuals with ESRD continues
to grow (8). Total Medicare spending for all CKD stages
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FIGURE 1 Glomerulus in the healthy state (A) and a glomerulus in
the setting of high animal protein intake (B). Note that the afferent
arteriole is dilated in the setting of high animal protein intake,
which impairs autoregulation. GFR, glomerular filtration rate.

exceeded $98 billion in 2015, and spending will continue to
increase over time without substantial prevention efforts (8).

Impact of Dietary Factors on Kidney Disease
Progression
Strong adherence to Western dietary patterns is associated
with increased risk of CKD as defined by the presence
of moderate to severely increased levels of urine albumin
excretion and/or a rapid decline in glomerular filtration
rate (GFR; ≥3 mL · min−1 · 1.73 m−2) (9, 10). However,
associations between diet and incident CKD may be largely
mediated by insulin resistance and development of the
metabolic syndrome, diabetes, and hypertension (11). In fact,
it has been estimated that >90% of cases of type 2 diabetes
and 65% of hypertension cases, the two major causes of
kidney disease, could be prevented if all US adults adhered
to a healthy lifestyle and diet (12, 13).

Dietary practices alone are likely not sufficient to induce
kidney damage in most individuals because mammals have a
redundant set of nephrons, the working unit of the kidney.
A nephron contains a tuft of capillaries surrounded by a
capsule that captures the fluid filtered through the glomerular
capillary wall and surrounding podocytes (Figure 1), called a
glomerulus, and tubules that originate from the glomerulus
and carry the glomerular filtrate through the kidney to the
renal pelvis. These tubules reabsorb fluid, electrolytes, and
bicarbonate from the filtrate and also secrete electrolytes
and other substances such as antimicrobial peptides. The

function of kidneys is reflected by the GFR, which is defined
as the amount of blood filtered of some substance per
unit time and reported in mL · min−1 · 1.73 m−2 body
surface area. The total GFR is the total sum of each nephron
GFR. Most individuals have ∼900,000 nephrons per kidney;
thus, with two kidneys, the average total nephron number
is 1.8 million. When the nephron number is high, each
individual nephron does not need to work at maximum
capacity. Thus, normal kidney function can be sustained
even after substantial nephron loss. This is why healthy
individuals can donate a kidney, losing 50% of their total
nephrons, and still maintain a normal GFR. However, not
all persons are born with a redundant set of nephrons
(14, 15), and these individuals may have the highest risk
of developing kidney disease during their lifetime. As a
person ages, nephron senescence occurs, and this nephron
dropout may be accelerated by long-term exposure to chronic
diseases such as diabetes and hypertension. With nephron
loss, the remaining nephrons must work at a higher capacity
to maintain a normal total GFR. Similarly, single nephron
GFR must increase with substantial weight gain (e.g., morbid
obesity) because the metabolic demands of the body have
substantially increased. To increase single nephron GFR, the
glomerulus increases in size to increase the capillary surface
area for filtration. If the increase in glomerular capillary
surface area is not adequate to sufficiently increase single
nephron GFR, then GFR may increase further via preferential
vasodilation of the afferent arteriole, leading to increased
hydrostatic pressure inside the glomerular capillary.

The requirement to work at a higher capacity leaves
the nephron vulnerable to the potential deleterious effects
of Western dietary patterns characterized by high intake
of red meat and animal fat and highly processed foods
preserved with phosphate and sodium and low intake of
fresh fruits and vegetables (10). For a person with non-
dialysis-dependent CKD, dietary changes remain a low-cost
but effective intervention for prevention of CKD progression.
Attention to diet should be emphasized when CKD is first
diagnosed, a time period when interventions are most likely
to be effective. Although multiple factors of the Western diet
may influence kidney disease progression, this article focuses
on three key dietary factors—animal protein, salt, and fruit
and vegetable intake—and discusses areas of research need.

Protein
The typical US diet contains approximately twice the protein
intake recommended by US dietary guidelines (16). Among
persons with reduced nephron number, a high amount
of animal protein intake may lead to further nephron
loss via hemodynamic glomerular capillary injury. High
animal protein intake interferes with the kidney’s ability to
autoregulate glomerular capillary blood flow by triggering
humoral and local mediators that vasodilate the afferent
arteriole (Figure 1) (17–20). After a meat meal, both renal
blood flow and GFR increase. In fact, when persons with
normal kidney function transition from low to high animal
protein intake, both renal blood flow and GFR may increase
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up to 30% (21, 22). This augmentation of renal blood flow
is limited to animal protein intake, and persons following
a vegetarian diet typically have lower GFR compared with
persons consuming animal protein (17). This afferent arteri-
olar dilatation occurs due to amino acids triggering multiple
humoral and local mediators that vasodilate the afferent
arteriole (17–20). A single mediator of this vasodilation
has never been completely substantiated, and it is likely
that multiple factors operate collectively. Potential mediators
of this vasodilatation include l-3,4-dihydroxyphenylalanine,
prostaglandins, NO, and N-methyl-d-aspartate (23).

To understand why high intake of animal protein accel-
erates loss of kidney function, it is important to examine
how the kidney protects itself from hemodynamic injury.
Each nephron is really an arteriole suspended in urine
without support of bone, muscle, fat, or connective tissue.
One can think of the nephron as a water balloon: If the
pressure inside that balloon becomes too high, it will burst
due to increased wall tension. Any elevation in glomerular
intracapillary pressure will increase capillary wall tension
according to the law of LaPlace, shown in Equation (1) (24).

Tension = (
pressure × radius

)
/2 (1)

The nephron protects itself from this hemodynamic
injury by vasoconstricting the afferent arteriole (input of
blood flow into the nephron) and/or vasodilating the efferent
arteriole (output of blood flow from nephron) in order to
maintain a constant amount of glomerular intracapillary
pressure (Figure 1). The effects of high protein intake may
be most operative in the setting of reduced working nephron
number because each individual nephron is working at a
higher capacity via augmentation of glomerular capillary
surface area and potentially preferential vasodilation of
the afferent arteriole. Elevated systemic pressures will be
transmitted to the delicate glomerular capillary and may
result in elevated capillary wall tension, scarring, and
nephron loss (24–27). Thus, reduced nephron number where
single nephron GFR must increase combined with high
intake of animal protein may counteract the autoregulatory
vasoconstriction needed to protect the glomerular capillary
against elevated systemic pressures.

The mechanical distension of glomerular capillaries and
heightened capillary wall shear stress also lead to stretching
of mesangial cells, which are smooth muscle-like cells lying
adjacent to and in between the glomerular capillaries. Phys-
ical stretching of mesangial cells stimulates their production
of collagen and extracellular matrix, which leads to nephron
scarring (28–30). Activated mesangial cells also stimulate
the production of TGF-β1 by endothelial cells lining the
inner glomerular capillary. TGF-β1 then further stimulates
mesangial cells to produce extracellular matrix, exacerbating
glomerular scarring (31).

High-protein diets are also associated with increased
urine albumin excretion in adults with multiple kidney
disease risk factors (32, 33), and low-protein diets may
reduce urinary albumin excretion. In a healthy state, urine
albumin excretion is very low due to structural barriers in

FIGURE 2 Distribution of podocytes around a glomerular
capillary wall in a glomerulus in a healthy state (A) and in the
setting of glomerular hypertrophy (B). Note that in the setting of
glomerular hypertrophy, the density of podocyte distribution is
decreased while the capillary diameter is increased, which leads to
heightened capillary wall tension.

the glomerular capillary wall that prevent proteins such as
albumin from entering the urinary space. High protein intake
may accelerate apoptosis of podocytes, cells that surround the
external layer of the glomerular capillary and act mainly as a
barrier to prevent proteins from escaping the blood into the
urinary space during glomerular filtration (Figure 2). Diets
high in protein sources such as meat cooked at high heat
contain high amounts of advanced glycation end products
(AGEs) (34, 35), which are highly reactive aldehydes that
can bind to receptors or link with cell wall proteins and
alter cell structure and function, leading to cell death. AGEs
may be formed via nonenzymatic Maillard reactions or other
pathways that lead to glycation and oxidation of reducing
sugars with free amino groups, and they can occur with
cooking of proteins or endogenously (36). Receptors for
AGEs are found on podocytes, and expression of these
receptors increases in diabetes (35). In the setting of high cir-
culating AGE levels, these glycoxidation products can lead to
podocyte apoptosis via activation of a forkhead transcription
factor that turns on genes involved in cell cycle arrest and
apoptosis (37). Podocyte susceptibility to injury from AGEs
will be heightened in the setting of glomerular hypertrophy
and capillary dilatation because a single podocyte must
cover a larger surface area (Figure 2). This stretching of
podocytes can lead to partial detachment from the glomeru-
lar capillary and heighten their susceptibility to injury.
Podocytes may provide structural support for glomerular
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capillaries, and reductions in podocyte density may also
heighten nephron susceptibility to hemodynamic injury
(38, 39).

Receptors for AGEs are also found on mesangial cells, and
when activated, they stimulate production of collagen and
matrix, which accelerates glomerular sclerosis (40, 41). Diets
high in protein may also suppress mitochondrial autophagy
via activation of the mammalian target of a rapamycin
complex 1 pathway (42, 43). Autophagy suppression results
in reduced mitochondrial quality, and these damaged mito-
chondria accumulate in tubular cells of the kidney, which
then incites inflammation and oxidative stress (43).

Kidney disease progression may also occur via nonhemo-
dynamic mechanisms as a result of gut-derived uremic toxins
such as trimethylamine N-oxide (TMAO) and p-cresyl sul-
fate, along with others in the setting of high protein and egg
yolk intake. Although research is emerging regarding other
gut-derived uremic toxins, existing evidence suggests that
elevated TMAO levels accelerate CKD progression (44, 45) by
enhancing phosphorylation of Smad3, a regulator of fibrosis
via transduction of TGF-β and acceleration of glomerular
scarring (44, 46). In the gastrointestinal tract, bacteria
from the phyla Firmicutes and Proteobacteria metabolize
phosphatidylcholine, choline, and l-carnitine into TMAO,
which is then filtered and excreted by the kidney (Figure
3). TMAO levels are inversely associated with GFR and are
generally increased in persons with CKD, depending on diet
(47). Although diets high in red meat and egg yolks can lead
to higher levels of TMAO (44), there appear to be substantial
inter-individual differences in TMAO levels in response to
dietary intake of TMAO precursors such as egg yolks and
red meat (48, 49). After challenged with a TMAO precursor
such as carnitine, individuals who are long-term meat eaters
tend to have higher concentrations of TMAO compared with
those who follow a vegetarian diet (50). Such differences
in response to TMAO precursors may be a function of the
uniqueness of the gastrointestinal microbiome shaped by
long-term dietary habits. Endosymbiotic bacteria such as
Bifidobacterium inhibit gram-negative pathogen growth and
thus reduce the production of gut-derived uremic toxins
(51–54). Unfortunately, existing trials of probiotics and oral
adsorbents to reduce gut-derived uremic toxins have shown
no impact on kidney disease progression (54, 55).

Clinical Trials of Protein Restriction for CKD
One of the largest clinical trials to examine the association
between protein intake and kidney disease progression
was the Modification of Diet in Renal Disease (MDRD)
study (56). The MDRD study randomized 585 adults with
established CKD (predominantly nondiabetic) and GFR
of 25 to 55 mL · min−1 · 1.73 m−2 to either a usual-
protein diet (1.3 g·kg−1·d−1) or a low-protein diet (0.58
g·kg−1·d−1) and followed them over time for loss of GFR.
Although the decline in GFR was slower with the low-protein
diet, differences in GFR decline did not meet statistical
significance and the overall findings were null. Multiple
clinical trials of protein restriction have been summarized

in meta-analyses, and findings show a moderate effect of
protein restriction on GFR decline (57–59); however, results
are mixed. Among adults with established CKD, moderate
protein restriction (∼0.7 g·kg−1·d−1) compared with a
standard protein intake (∼1.0 g·kg−1·d−1) is associated with
a 0.95 mL · min−1 · 1.73 m−2 (95% CI: 0.11, 1.79) slower
kidney function decline. However, effects differ by diabetes
status, with markedly weaker effects noted in patients with
type 2 diabetes (57). Among a total of 10 trials, very-low-
protein diets reduced risk of progression to ESRD by 35%
(95% CI: 0.49, 0.85) among adults with advanced kidney
disease (59). Very-low-protein diets require supplementation
with essential amino acids and close monitoring to ensure
adequate caloric and macronutrient intake (56). A recent
meta-analysis found no significant mortality risk with very-
low-protein diets compared with low- or normal-protein
diets in adults with CKD (59); however, the risks of this
intervention should not be discounted. Long-term follow-up
of the MDRD study found that individuals with a baseline
GFR of 13–24 mL · min−1 · 1.73 m−2 assigned to a very-low-
protein diet (0.28 g·kg−1·d−1) supplemented with a mixture
of essential keto acids and amino acids showed an almost
2-fold increased risk of death (95% CI: 1.15, 3.20) but no
significant difference in kidney failure risk (HR: 0.83; 95%
CI: 0.62, 1.12) compared with participants allocated to a
protein intake of 0.58 g·kg−1·d−1 (60). Low-protein diets also
increase the risk of protein-energy wasting, sarcopenia, and
frailty, which can negatively impact quality of life (42). Such
risks must be considered because low-protein diets may not
be appropriate for some patients with CKD, especially those
who are older and at risk for malnutrition.

An important limitation of previous controlled trials of
protein restriction is that dietary trials have largely focused
on restricting total protein rather than on the type of protein
intake (animal compared with vegetable). Protein type may
be more important for kidney disease progression than
the total amount of protein intake. One cohort study that
examined kidney disease outcomes during a 15-y period
among 63,257 Chinese adults with a mean BMI (kg/m2) of
23 found no dose-dependent association between quartiles
of total protein intake and ESRD risk (61). However, higher
red meat intake was associated with increased risk of ESRD,
whereas non-red meat sources of protein were not associated
with ESRD (61).

An analysis of the Atherosclerosis Risk in Communities
(ARIC) study, a US cohort of 14,882 adults with baseline
estimated GFR (eGFR) ≥60 mL · min−1 · 1.73 m−2, also
showed significantly higher risk of CKD (eGFR <60 mL
· min−1 · 1.73 m−2 combined with a ≥25% eGFR decline
at any follow-up study visit relative to baseline eGFR) with
increasing intake of red and processed meat. The highest
quartile of red and processed meat intake was associated with
a 22% higher risk of CKD (95% CI: 1.07, 1.40) compared
with the lowest quartile (P-trend = 0.02). In contrast, strong
adherence to the Dietary Approaches to Stop Hypertension
(DASH) diet—a diet characterized by low intake of red and
processed meat and high intake of fruits, vegetables, and
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FIGURE 3 Dietary sources of choline, phosphatidylcholine, and L-carnitine include red meat, cheese, and egg yolk. Choline,
phosphatidylcholine, and L-carnitine are metabolized in the gut, leading to production of trimethylamine N-oxide and p-cresyl sulfate.
These uremic toxins are excreted by the kidney, and in the setting of reduced kidney function, circulating levels may increase and
contribute to atherosclerosis. CKD, chronic kidney disease.

low-fat dairy products—was associated with a 14% lower
risk of CKD compared with those with the lowest adherence
to a DASH-type diet over a median follow-up period of
23 y. The only other individual DASH diet component
that was significantly associated with CKD risk was low-
fat dairy products. Even after adjustment for demographics,
overweight and obesity, diabetes, and hypertension status
along with systolic blood pressure levels, a significant trend
in CKD risk (P < 0.001) was noted across quintiles of low-fat
dairy intake, with the highest quintile associated with a 16%
lower risk for CKD (95% CI: 5%, 25%) compared with the
lowest quintile.

Clinical trial data remain limited regarding the impact
of a vegetarian diet on CKD outcomes. Garneata et al. (62)
examined whether a low-protein diet with vegetable sources
of protein (0.3 g·kg−1·d−1) supplemented with ketoanalogs
slows CKD progression relative to a low-protein diet (0.6
g·kg−1·d−1) with mixed protein sources. A total of 208 adults
with eGFR <30 mL · min−1 · 1.73 m−2 and no diabetes were

followed for 1.5 y. The rate of renal replacement therapy initi-
ation was significantly lower among participants assigned to
the vegetarian protein diet supplemented with ketoanalogs
compared with the mixed protein intake (11% compared
with 30%; P < 0.001). In addition, a 50% decline in GFR
and/or initiation of renal replacement therapy occurred in
13% of the vegetarian protein diet group and 42% of the
mixed low-protein intake group (P < 0.001). Note that
only 14% of screened individuals were randomized into the
trial, so the intervention may not be acceptable to some
patients. In addition, the total protein intake may not have
differed substantially between the two groups due to use of
ketoanalogs.

The most recent nutrition guidelines published in 2010
by the Academy of Nutrition and Dietetics recommend
that dietary protein intake be maintained at 0.6–0.8 g·
kg−1· d−1 when eGFR is <50 mL · min−1 · 1.73 m−2.
When eGFR is <20 mL · min−1 · 1.73 m−2, then a very-
low-protein diet (0.3–0.5 g·kg−1·d−1) can be considered as
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long as keto acid analogs are available in order to meet
protein requirements (63). A higher amount of protein
intake (0.8 or 0.9 g·kg−1·d−1) is recommended for persons
with diabetic nephropathy because meta-analyses have not
consistently demonstrated significant lowering of kidney
disease progression with protein restriction in this popu-
lation (57). The type of protein intake is not specified in
the recommendations by the Academy, but the guidelines
do mention that consumption of red meat increases urine
albumin excretion in patients with CKD (63).

Phosphate
Protein sources contain phosphate, with phosphate content
in plant protein mainly in the form of phytic acid (64). Ab-
sorption of phosphate from phytic acid requires the enzyme
phytase, which shows low activity in humans (64). Thus,
net gastrointestinal phosphate absorption from plant protein
sources is substantially lower than phosphate obtained from
animal protein or from foods preserved with inorganic
phosphate (65). In animal models, high phosphate intake
leads to necrosis of the kidney tubules, interstitial scarring,
and nephrocalcinosis, and effects are magnified in the setting
of reduced nephron number with partial nephrectomy (66,
67). Restriction of phosphate intake can also ameliorate
tubular injury and scarring, and it can ameliorate kidney
disease progression in partially nephrectomized animals
(68–71) or in experimental animal models of immunologic
kidney disease (72). Although habitual phosphate intake in
humans does not mirror intake in these animal studies of
phosphate injury, use of sodium phosphate enemas for bowel
preparation can add >10 g of elemental phosphate and incite
phosphate nephropathy and kidney failure (73–76).

To date, high dietary phosphate intake has not been
established as a substantial risk factor for kidney disease or its
progression, but data are emerging (77). One nonrandomized
study of a dietary intervention with 0.3 g·kg−1·d−1 of protein
supplemented with ketoanalogs among adults with estab-
lished proteinuric kidney disease found that participants with
lower phosphate intake showed greater reductions in urine
protein excretion (78). A post hoc analysis of the PREMIER
trial (79) found that reduced urinary phosphate excretion
with a dietary intervention was predictive of subsequent
decreases in urine albumin excretion among participants
with normal kidney function (77). Other studies have shown
no substantial difference in kidney disease outcomes with
measures of dietary phosphate intake (80, 81), but null
findings may be due to the inherent difficulties in assess-
ing dietary phosphate intake (77). Potential mechanisms
whereby high dietary phosphate intake may harm the kidney
include abrogation of endothelial function (82, 83) and
facilitation of calcium deposition in the kidney and vessels
(77).

Dietary Fat
Although mortality risk appears heightened among adults
with CKD consuming a diet rich in fried foods and animal fat
(84), the role of dietary fat in CKD incidence and progression

remains poorly studied. Dietary fat does appear to influence
glomerular hyperfiltration as defined by a GFR >2 SD
above normal (85). However, studies have not consistently
demonstrated an association between saturated fat intake and
kidney function decline or ESRD (9, 86–88). In contrast,
cross-sectional studies have consistently demonstrated an
association between higher saturated fat intake and the
presence of increased urine albumin excretion (9, 86, 88), but
this association may be confounded by the effects of dietary
saturated fat on blood pressure (89, 90).

Dietary n–3 PUFAs may be beneficial for slowing kid-
ney disease progression. Supplementation of n–3 PUFAs
decreases mesangial cell proliferation and matrix production,
enhances endothelial function, and lowers blood pressure
(91, 92). A few studies have reported that higher plasma levels
of n–3 PUFAs correlate with slower decline in GFR over time
in older adults or in adults with established CKD, but findings
have not been consistent (93). Randomized controlled trials
of n–3 PUFAs on kidney disease progression in adults with
established CKD have largely shown no benefit for slowing
GFR decline but have demonstrated small reductions in urine
protein excretion (91, 93). Existing trials are small with short
duration, heterogeneous, and encompass a wide variety of
kidney disease etiologies; thus, more studies are needed (91).

Salt
For this discussion, salt refers to sodium chloride. Decades of
research has confirmed the deleterious effects of high sodium
chloride intake on blood pressure, cardiovascular disease,
kidney function, and CKD progression (94). Although
sodium is a cation that can bind with multiple anions,
research has not demonstrated that intake of sodium bicar-
bonate, sodium phosphate, or sodium citrate incites injury
similar to sodium chloride. Reducing salt intake remains
an important intervention for reducing blood pressure in
hypertensive individuals (94–96), and reductions in salt
intake result in lower blood pressure and also lower urine
albumin excretion (97–99). In the Ramipril Efficacy in
Nephropathy trial, a randomized trial of ramipril compared
with placebo in patients with nondiabetic kidney disease
with high urine protein excretion, high salt intake was
associated with a blunted response to 5 mg of ramipril daily
(100). A meta-analysis of 11 different randomized clinical
trials of salt reduction with or without blockade of the
renin–angiotensin–aldosterone system (RAAS) supported
the benefits of reducing salt intake for treatment of CKD
(101). The weighted difference between high and low salt
intake was 5.4 g based on 24-h urine collections. The lower
salt intake was associated with a 32% (95% CI: 18.8%, 44.3%)
lower urine albumin excretion compared with the high salt
intake (101). When analyses were limited to participants
receiving RAAS inhibitors, lower salt intake was associated
with a 41% (95% CI: 27.4%, 56.4%) lower urine albumin
excretion compared with high salt intake. The benefits of
low salt intake were more pronounced with older age,
advanced CKD, and obesity. Unfortunately, most clinical
trials examining salt intake are short in duration and do not
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examine hard endpoints such as cardiovascular outcomes or
need for renal replacement therapy.

The results from the previously mentioned meta-analysis
(101) along with those of other previous studies (97, 98)
suggest that many patients will benefit from salt reduc-
tion, especially older individuals and those with obesity
and/or low GFR. Kidney disease is characterized by salt
sensitivity (102), and high salt intake will increase blood
pressure and lead to volume expansion, making blood
pressure management more difficult in patients with kidney
disease.

A high salt intake may accelerate kidney disease pro-
gression independent of blood pressure by impairing renal
autoregulatory responses (103–105), but this hypothesis
remains controversial (106, 107). In contrast, multiple studies
have also demonstrated that high salt intake magnifies
oxidative stress in the kidney by stimulating nicotinamide
adenine dinucleotide and nicotinamide adenine dinucleotide
phosphate superoxide anion generation (108, 109). Scarring
after nephron loss can also be amplified with a high salt intake
due to upregulation of TGF-β (110, 111).

The average sodium intake among US adults, as estimated
by nutrition surveys and timed urine collections, is approx-
imately 4 g/d among men and 3 g/d among women (112–
114). Existing nutrition guidelines for CKD recommend
sodium intake <2.4 g/d, but ideal intake may vary by age
and comorbidities (62). The high salt content of the Western
diet will elevate systemic blood pressure, expand extracellular
volume, and increase oxidative stress in persons with CKD
(108, 109). Patients with CKD should be encouraged to
prepare their own meals without added salt and avoid
processed foods.

Fruits and Vegetables
The kidneys regulate acid–base balance and must replace
bicarbonate that is consumed with buffering of dietary
acids. Generation of new bicarbonate (HCO3

−) requires
tubular excretion of nonvolatile acids and ammonium. Just
like total GFR is the sum of single nephron GFR, total
excretion of nonvolatile acids and ammonium is the sum
of excretion from each individual nephron. With nephron
loss, the remaining nephrons must increase their generation
of new bicarbonate to prevent metabolic acidosis (115).
Nonvolatile acids in the kidney are mainly produced when
organic sulfur from methionine and cysteine is oxidized to
inorganic sulfates.. These acids are then balanced by alkali
obtained from the metabolizing of organic anions such as
citrate and malate found in fruits and vegetables. The net
endogenous acid production is equivalent to the total amount
of endogenous acids minus the alkali from foods absorbed in
the intestine (116). When acid load is increased (e.g., after
a large meat meal), the kidneys will increase bicarbonate
generation above its normal baseline by augmenting the
excretion of ammonium (NH4

+). Unlike the excretion of
nonvolatile acids, the excretion of NH4

+ can be increased
several fold to maintain acid–base balance (115).

With reduced nephron number and high net endogenous
acid load, the tubular ammonium concentration increases
and can lead to tubular toxicity and damage. Augmentation
of ammonium excretion due to high dietary acid load
leads to heightened activity of the renin–angiotensin system
within the tubules and increased production of endothelin-
1, a potent vasoconstrictor that promotes tissue injury and
scarring (117). High dietary acid load also activates the
alternate complement cascade in the renal tubules and can
lead to kidney injury (118–124). Diets high in fruits and
vegetables and low in animal protein are associated with
lower endogenous acid load and thus lower workload for
each individual nephron.

The DASH diet is high in fruits and vegetables and low-fat
dairy products and low in animal protein. Consumption of a
DASH diet is associated with 50% lower net endogenous acid
production compared with the typical Western diet (116).
Simply increasing alkali intake with fruits and vegetables or
with sodium bicarbonate tablets may lower net endogenous
acid excretion by more than one-third (125), which may
minimize individual nephron workload and slow loss of
kidney function (126–128).

Dietary Fiber
The Western diet is associated with low fiber intake, which
is often accompanied by elevated levels of inflammatory
biomarkers such as serum C-reactive protein, IL-6, and TNF-
α receptor 2 (129–132). Elevated inflammatory marker levels
indicate increased cardiovascular and mortality risk regard-
less of CKD status (133–138) and also a heightened risk for
both CKD incidence and progression (86, 139–141). Diets
high in fiber can reduce cardiovascular disease risk (142–145)
and are associated with reduced mortality rates in adults with
CKD (146). The American Dietetic Association recommends
that adults consume 28 g/d of dietary fiber based on a
2000 kcal/d diet (147) to lower cardiovascular risk. Currently,
there are no specific recommendations for levels of dietary
fiber intake for adults with CKD, but recommendations for
the general population are likely safe and probably beneficial
as long as serum potassium and phosphate levels are
monitored (146).

Fiber intake may be especially important for individuals
with advanced CKD or kidney failure when urea excretion
is severely impaired due to low GFR. Urea directly disrupts
the gut barrier function by reducing the presence of occludin
and zonula occludens proteins in the tight junctions of the
gastrointestinal gut barrier, increasing intestinal permeability
and translocation of gut bacteria to the systemic circulation,
and heightening inflammation. High-fiber diets may be
protective in CKD by promoting the growth of commensal
bacteria such as Bifidobacterium, an endosymbiotic colonizer
of the gut that strengthens the gastrointestinal permeability
barrier (53, 148–150). In addition, a high-fiber diet facilitates
stool excretion and helps promote urea and potassium
excretion (151).
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Nutritional Guidelines for
Non-Dialysis-Dependent CKD
The National Kidney Foundation–Kidney Disease Outcomes
Quality Initiative Guidelines on Hypertension and Antihy-
pertensive Agents in CKD recommended a modified version
of the DASH diet for persons with CKD stages 3 and 4
(eGFR between 15 and 59 mL · min−1 · 1.73 m−2) (152).
The DASH diet includes higher protein intake than the
recommended daily allowance, but the majority of this
protein is from dairy products, vegetable sources, and non-
red meat. For persons with CKD, the DASH diet may be
modified to achieve a protein intake of 0.6–0.8 g·kg−1·d−1

as well as a lower phosphorus (0.8–1.0 g/d) and potassium
(2–4 g/d) intake. These recommendations are similar to
the American Diabetes Association nutrition guidelines for
persons with diabetes and CKD, which state that dietary
protein intake should be consistent with the recommended
daily allowance of 0.8 g·(kg·ideal body weight)−1 ·d−1 for
people with diabetes and CKD (153). Protein intake may
be restricted to 0.6 g·(kg·ideal body weight)−1 ·d−1 when
GFR decreases to <60 mL · min−1 · 1.73 m−2. High-protein
diets should be avoided in persons with established CKD
who are not receiving dialysis (154). Dietary fiber intake is
encouraged for persons with CKD, but no specific levels of
intake are suggested for this population (154). Information
on the safety and benefits of vegetarian diets in CKD remains
very limited, and this is an area of research need (155). With
the introduction of new agents for management of elevated
serum potassium levels that are well tolerated, diets can
now be liberalized to include more potassium-rich fruits and
vegetables.

Medical Nutrition Therapy
Because dietary practices strongly influence CKD incidence
and progression, medical nutrition therapy (MNT) is rec-
ommended for all patients with CKD (63, 156). Although
primary care providers and nephrologists often counsel
patients on optimal dietary practices, MNT services provided
by a registered dietitian nutritionist provide individualized
dietary evaluation and counseling and have been shown to
be cost-effective (157–162), improve control of diabetes and
hypertension, and even slow CKD progression and delay
need for dialysis (56, 58, 163–167). MNT services are not
meant to be a single time-point intervention but should
instead include periodic monitoring and reassessment of
dietary interventions tailored to slow disease progression.
Medicare provides 3 h of MNT counseling during the first
year for patients with eGFR <50 mL · min−1 · 1.73 m−2

who are not receiving dialysis. During subsequent years,
patients may receive 2 h of MNT services per year (168).
Additional hours of MNT services can be utilized if the
physician determines that a change in diagnosis is necessary
or that a medical condition requires dietary changes. Most
private insurance companies also cover MNT services similar
to Medicare. Unfortunately, less than 10% of adults with CKD
receive any dietary care prior to initiation of dialysis (5).

Research Needs
Given the low intake of fruits and vegetables and high
intake of animal meat, fat, and processed foods in the
majority of the US population, it is imperative that research
determine optimal methods for improving the diets of
adults, including those with kidney disease. Such research
could examine use of telehealth services combined with
mobile device applications or policy initiatives to incentivize
utilization of medical nutrition therapies. More research
is also needed to examine the impact of specific dietary
patterns, such as the Mediterranean diet or vegan diets,
on kidney disease outcomes. Fruits and vegetables are
often avoided by patients with advanced kidney disease
due to risk of hyperkalemia. New and safe medications
that prevent elevated serum potassium levels (169) can
now be incorporated into dietary trials for patients with
advanced CKD. Trials of very-low-protein diets have mainly
required patients follow the dietary intervention daily. Future
trials could examine whether intermittent protein restriction
retards kidney disease progression.

In summary, dietary factors are important for deter-
mining the workload of each individual nephron. In the
setting of CKD and reduced working nephron number, each
individual nephron is already at risk for hemodynamic injury.
High intake of animal protein and egg yolks combined with
low intake of fruits and vegetables is extremely conducive
for nephron injury, and mechanisms of injury are not
duplicative. Although a modified DASH diet is encouraged
for patients with CKD, more studies are needed to determine
the benefits and risks of vegetarian diets in this population.
Clinicians should consider the dietary patterns, traditions,
and culture of their patients when providing dietary advice
and utilize medical nutrition therapy services to guide their
patients to a healthier diet.
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